It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Thermo-economic optimization has to be carried out for an irreversible solar driven heat engine using finite-time/finite-size thermodynamic theory. In the considered heat engine model, heat transfer from the hot reservoir is assumed to be radiation mode and the heat transfer to the cold reservoir is assumed to be convection mode. The power output per unit total cost is taken as the objective function. The steps of problem formulation are rightly performed and all valid assumptions are taken into consideration. The effects of the irreversibility parameter, economical parameter and the design parameters on the thermo-economic objective function have been investigated.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer