Content area
Abstract
In this article, a 3D coupled Eulerian-Lagrangian (CEL) finite element method (FEM) model is presented for simulation of end milling processes based on Abaqus/Explicit. In the proposed model, the chip formation process does not rely on the degradation of material or continuous remeshing algorithms to achieve chip separation. The processes under investigation are the slot and shoulder milling of Al6061-T6. A linear motion of the workpiece is adopted as a simplification of the trochoidal motion of the end mill. The workpiece is given a sinusoidal profile to achieve a varying uncut chip thickness in the cutting process. With a stationary tool and a confined region of mesh refinement, the computational cost of the model can be minimized, which makes the proposed model compatible for parametric studies. The model demonstrates good accuracy in cutting force predictions. The prediction error of the resultant cutting forces can be controlled within 12% over various milling conditions. The proposed model also gives accurate predictions in terms of the morphology of chips. The excessive curling of chips in the early stages of chip formation can be predicted which has been compared with the shape of the actual chips collected during machining.
Details
; Lee, Heow Pueh 3 1 Singapore Institute of Manufacturing Technology, Singapore, Republic of Singapore; National University of Singapore, Singapore, Republic of Singapore
2 Singapore Institute of Manufacturing Technology, Singapore, Republic of Singapore
3 National University of Singapore, Singapore, Republic of Singapore





