Content area
Abstract
Surface roughness is influenced by the machining parameters and other uncontrollable factors resulting from the cutting tool in end milling operations. To perform the in-process surface roughness prediction (ISRP) system accurately, the uncontrollable factors must be monitored. In this paper, an empirical approach using a statistical analysis was employed to discover the proper cutting force to represent the uncontrollable factors in end milling operations. Furthermore, an in-process neural network-based surface roughness prediction (INN-SRP) system was developed. A neural network associated with sensing technology was applied as a decision-making system to predict the surface roughness for a wide range of machining parameters. The good accuracy of the results for a wide range of machining parameters indicates that the system is suitable for application in industry.
Details
1 Iowa State University, I. ED II, Ames, IA, USA, US





