It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Carbonates have been known to act as hydrocarbon source rocks, but their basic geochemical and associated hydrocarbon generation characteristics remain not well understood as they occur with argillaceous source rocks in most cases, and the hydrocarbon generation from each rock type is difficult to distinguish, forming one of puzzling issues within the field of petroleum geology and geochemistry. To improve the understanding of this critical issue, this paper reviews recent advances in this field and provides a summary of key areas that can be studied in future. Results show that carbonate source rocks are generally associated with high-salinity environments with low amounts of terrestrial inputs and low dissolved oxygen contents. Petrographically, these source rocks are dark gray or black, fine-grained, stratified, and contain bacterial and algal bioprecursors along with some other impurities. They generally have low organic matter contents, although these can vary significantly in different cases (e.g., the total organic carbon contents of marine and lacustrine carbonate source rocks in China are generally 0.1%–1.0% and 0.4%–4.0%, respectively). These rocks contain type I and type II kerogen, meaning there is a lack of vitrinites. This means that assessment of the maturity of the organic matter in these sediments needs to use non-traditional techniques rather than vitrinite reflectance. In terms of molecular geochemistry, carbonate source rocks have typical characteristics indicative of generally reducing and saline environments and lower organism-dominated bioprecursors of organic matter, e.g., high contents of sulfur compounds, low Pr/Ph ratios, and dominance of n-alkanes. Most of the carbonate source rocks are typically dominated by D-type organic facies in an oxidized shallow water mass, although high-quality source rocks generally contain A- and B-type organic facies in saline lacustrine and marine-reducing environments, respectively. The hydrocarbon generation model for the carbonate source rocks can involve early, middle, and late stages, with a diversity of hydrocarbons within these rocks, which can be aggregated, adsorbed, enclosed within minerals, or present as inclusions. This in turn implies that the large-scale hydrocarbon expulsion from these rocks is reliant on brittle deformation caused by external forces. Finally, a number of aspects of these source rocks remain unclear and need further study, including the effectiveness of carbonates as hydrocarbon source rocks, bioprecursors, and hydrocarbon generation models of carbonate source rock, and the differences between marine and lacustrine carbonate source rocks.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 MOE Key Laboratory of Surficial Geochemistry, School of Earth Sciences and Engineering, Nanjing University, Nanjing, Jiangsu, China
2 Research Institute of Experiment and Testing, PetroChina Xinjiang Oilfield Company, Karamay, Xinjiang, China