It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Interfacial reactions between electrode and electrolyte are critical, either beneficial or detrimental, for the performance of rechargeable batteries. The general approaches of controlling interfacial reactions are either applying a coating layer on cathode or modifying the electrolyte chemistry. Here we demonstrate an approach of modification of interfacial reactions through dilute lattice doping for enhanced battery properties. Using atomic level imaging, spectroscopic analysis and density functional theory calculation, we reveal aluminum dopants in lithium nickel cobalt aluminum oxide are partially dissolved in the bulk lattice with a tendency of enrichment near the primary particle surface and partially exist as aluminum oxide nano-islands that are epitaxially dressed on the primary particle surface. The aluminum concentrated surface lowers transition metal redox energy level and consequently promotes the formation of a stable cathode-electrolyte interphase. The present observations demonstrate a general principle as how the trace dopants modify the solid-liquid interfacial reactions for enhanced performance.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details


1 Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, USA
2 McKetta Department of Chemical Engineering & Texas Materials Institute, The University of Texas at Austin, Austin, TX, USA
3 Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, PA, USA
4 Materials Science and Engineering Program and Texas Materials Institute, The University of Texas at Austin, Austin, TX, USA