Content area

Abstract

The emergence of the Fog computing paradigm that leverages in-network virtualized resources raises important challenges in terms of resource and IoT application management in a heterogeneous environment offering only limited computing resources. In this work, we propose a novel Pareto-based approach for application placement close to the data sources called Multiobjective IoT application Placement in fOg (MAPO). MAPO models applications based on a finite state machine and uses three conflicting optimization objectives, namely completion time, energy consumption, and economic cost, considering both the computation and communication aspects. In contrast to existing solutions that optimize a single objective value, MAPO enables multi-objective energy and cost-aware application placement. To evaluate the quality of the MAPO placements, we created both simulated and real-world testbeds tailored for a set of medical IoT application case studies. Compared to the state-of-the-art approaches, MAPO reduces the economic cost by up to 27%, while decreasing the energy requirements by 23-68%, and optimizes the completion time by up to 7.3 times.

Details

1009240
Title
MAPO: A Multi-Objective Model for IoT Application Placement in a Fog Environment
Publication title
arXiv.org; Ithaca
Publication year
2019
Publication date
Aug 3, 2019
Section
Computer Science
Publisher
Cornell University Library, arXiv.org
Source
arXiv.org
Place of publication
Ithaca
Country of publication
United States
University/institution
Cornell University Library arXiv.org
e-ISSN
2331-8422
Source type
Working Paper
Language of publication
English
Document type
Working Paper
Publication history
 
 
Online publication date
2019-08-06
Milestone dates
2019-08-03 (Submission v1)
Publication history
 
 
   First posting date
06 Aug 2019
ProQuest document ID
2268889985
Document URL
https://www.proquest.com/working-papers/mapo-multi-objective-model-iot-application/docview/2268889985/se-2?accountid=208611
Full text outside of ProQuest
Copyright
© 2019. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Last updated
2019-08-07
Database
ProQuest One Academic