Abstract

Porous single-crystalline (P-SC) titanium dioxide in large size would significantly enhance their photoelectrochemical functionalities owing to the structural coherence and large surface area. Here we show the growth of P-SC anatase titanium dioxide on an 2 cm scale through a conceptually different lattice reconstruction strategy by direct removal of K/P from KTiOPO4 lattice leaving the open Ti-O skeleton simultaneously recrystallizing into titanium dioxide. The (101) facet dominates the growth of titanium dioxide while the relative titanium densities on different parent crystal facets control the microstructures. Crystal growth in reducing atmospheres produces P-SC TinO2n-1 (n = 7~38) in magneli phases with enhanced visible-infrared light absorption and conductivity. The P-SC TinO2n-1 shows enhanced exciton lifetime and charge mobility. The P-SC TinO2n-1 boosts photoelectrochemical oxidation of benzene to phenol with P-SC Ti9O17 showing 60.1% benzene conversion and 99.6% phenol selectivity at room temperature which is the highest so far to the best of our knowledge.

Details

Title
Porous single-crystalline titanium dioxide at 2 cm scale delivering enhanced photoelectrochemical performance
Author
Cheng, Fangyuan 1 ; Lin, Guoming 1 ; Hu, Xiuli 1 ; Xi, Shaobo 1 ; Xie, Kui 1   VIAFID ORCID Logo 

 CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Lab of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, China 
Pages
1-9
Publication year
2019
Publication date
Aug 2019
Publisher
Nature Publishing Group
e-ISSN
20411723
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2270514270
Copyright
© 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.