It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
We have studied the characteristics of frequency response at 850-nm GaAs high-speed vertical-cavity surface-emitting lasers (VCSELs) with different kinds of oxide aperture sizes and cavity length using the PICS3D simulation program. Using 5-μm oxide aperture sizes, the frequency response behavior can be improved from 18.4 GHz and 15.5 GHz to 21.2 GHz and 19 GHz in a maximum of 3 dB at 25 °C and 85 °C, respectively. Numerical simulation results also suggest that the frequency response performances improved from 21.2 GHz and 19 GHz to 30.5 GHz and 24.5 GHz in a maximum of 3 dB at 25 °C and 85 °C due to the reduction of cavity length from 3λ/2 to λ/2. Consequently, the high-speed VCSEL devices were fabricated on a modified structure and exhibited 50-Gb/s data rate at 85 °C.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Department of Photonics & Graduate Institute of Electro-Optical Engineering, College of Electrical and Computer Engineering, National Chiao Tung University, Hsinchu, Taiwan
2 Institute of Photonic System, National Chiao Tung University, Tainan, Taiwan
3 Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei, Taiwan
4 Crosslight Software Inc., China Branch, Shanghai, China