It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Reciprocating compressor is one of the most popular classes of machines use with wide applications in the industry. However, valve failures in this machine often results unplanned shutdown. Therefore, the effective valve fault detection technique is very necessary to ensure safe operation and to reduce the unplanned shutdown. This paper propose an artificial intelligence (AI) model to detect valve condition in reciprocating compressor based on acoustic emission (AE) parameters measurement and artificial neural network (ANN). A set of experiments were conducted on an industrial reciprocating air compressor with several operational conditions including good valve and faulty valve to acquire AE signal. A fault detection model was then developed from the combination of healthy-faulty data using ANN tool box available in MATLAB. The results of the model validation demonstrated accuracy of valves condition classification exceeding 97%. Eventually, the authors intend to do more efforts for programming this model in smart portable device which can be one of the innovative engineering technologies in the field of machinery condition monitoring in the near future.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer