It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Adaptive management practices that maximize yields while improving yield resilience are required in the face of resource variability and climate change. Ecological intensification such as organic farming and cover cropping are lauded in some studies for fostering yield resilience, but subject to criticism in others for their low productivity. We implemented a quantitative framework to assess yield resilience, emphasizing four aspects of yield dynamics: yield, yield stability, yield resistance (i.e., the ability of systems to avoid crop failure under stressful growing conditions), and maximum yield potential. We compared the resilience of maize-tomato rotation systems after 24 years of irrigated organic, cover cropped, and conventional management in a Mediterranean climate, and identified crop-specific resilience responses of tomato and maize to three management systems. Organic management maintained tomato yields comparable to those under conventional management, while increasing yield stability and resistance. However, organic and cover cropped system resulted in 36.1% and 35.8% lower maize yields and reduced yield stability and resistance than the conventional system. Our analyses suggest that investments in ecological intensification approaches could potentially contribute to long-term yield resilience, however, these approaches need to be tailored for individual crops and systems to maximize their benefits, rather than employing one-size-fits-all approaches.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details

1 Department of Plant Sciences, University of California, Davis, One Shields Avenue, Davis, CA, United States
2 Agricultural Sustainability Institute, University of California, Davis, One Shields Avenue, Davis, CA, United States
3 Department of Land, Air, and Water Resources, University of California, Davis, One Shields Avenue, Davis, CA, United States