It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
We study the quantum phase transitions in the nickel pnctides, CeNi2−δ(As1−xPx)2 (δ ≈ 0.07–0.22) polycrystalline samples. This series displays the distinct heavy fermion behavior in the rarely studied parameter regime of dilute carrier limit. We systematically investigate the magnetization, specific heat and electrical transport down to low temperatures. Upon increasing the P-content, the antiferromagnetic order of the Ce-4f moment is suppressed continuously and vanishes at xc ~ 0.55. At this doping, the temperature dependences of the specific heat and longitudinal resistivity display non-Fermi liquid behavior. Both the residual resistivity ρ0 and the Sommerfeld coefficient γ0 are sharply peaked around xc. When the P-content reaches close to 100%, we observe a clear low-temperature crossover into the Fermi liquid regime. In contrast to what happens in the parent compound x = 0.0 as a function of pressure, we find a surprising result that the non-Fermi liquid behavior persists over a nonzero range of doping concentration, xc < x < 0.9. In this doping range, at the lowest measured temperatures, the temperature dependence of the specific-heat coefficient is logarithmically divergent and that of the electrical resistivity is linear. We discuss the properties of CeNi2−δ(As1−xPx)2 in comparison with those of its 1111 counterpart, CeNi(As1−xPx)O. Our results indicate a non-Fermi liquid phase in the global phase diagram of heavy fermion metals.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details


1 Zhejiang Province Key Laboratory of Quantum Technology and Device, Department of Physics, Zhejiang University, Hangzhou, China; Zhejiang University of Water Resources and Electric Power, Hangzhou, China
2 Zhejiang Province Key Laboratory of Quantum Technology and Device, Department of Physics, Zhejiang University, Hangzhou, China
3 Department of Physics, Hangzhou Normal University, Hangzhou, China
4 Zhejiang Province Key Laboratory of Quantum Technology and Device, Department of Physics, Zhejiang University, Hangzhou, China; Zhejiang California International NanoSystems Institute, Zhejiang University, Hangzhou, P. R. China; Collaborative Innovation Centre of Advanced Microstructures, Nanjing University, Nanjing, P. R. China
5 Department of Physics and Astronomy, Rice University, Houston, Texas, USA