It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Web applications are popular targets for cyber-attacks because they are network-accessible and often contain vulnerabilities. An intrusion detection system monitors web applications and issues alerts when an attack attempt is detected. Existing implementations of intrusion detection systems usually extract features from network packets or string characteristics of input that are manually selected as relevant to attack analysis. Manually selecting features, however, is time-consuming and requires in-depth security domain knowledge. Moreover, large amounts of labeled legitimate and attack request data are needed by supervised learning algorithms to classify normal and abnormal behaviors, which is often expensive and impractical to obtain for production web applications.
This paper provides three contributions to the study of autonomic intrusion detection systems. First, we evaluate the feasibility of an unsupervised/semi-supervised approach for web attack detection based on the Robust Software Modeling Tool (RSMT), which autonomically monitors and characterizes the runtime behavior of web applications. Second, we describe how RSMT trains a stacked denoising autoencoder to encode and reconstruct the call graph for end-to-end deep learning, where a low-dimensional representation of the raw features with unlabeled request data is used to recognize anomalies by computing the reconstruction error of the request data. Third, we analyze the results of empirically testing RSMT on both synthetic datasets and production applications with intentional vulnerabilities. Our results show that the proposed approach can efficiently and accurately detect attacks, including SQL injection, cross-site scripting, and deserialization, with minimal domain knowledge and little labeled training data.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer