Abstract

A silicon layer that is tens of micrometers thick on a handle substrate is desired for applications involving power devices, microelectromechanical systems (MEMS), highly efficient silicon solar cells (<50 µm), etc. In general, if the initial silicon layer obtained from the layer transfer process using the etch-stop or ion-cut techniques, which may provide very accurate thickness control, is too thin, then additional epitaxial growth is required to increase the thickness of the silicon layer. However, epitaxial growth under strict predeposition conditions is a time-consuming and expensive process. On the other hand, producing porous silicon via anodization in a hydrofluoric acid solution offers an efficient way to control the dimensions of the generated pores directly on the nano- or macroscale via the current density. When sintering the porous layer via high-temperature argon annealing, the porosity of the porous layer determines whether this porous layer can serve as a device layer or a separation layer. In addition, it is clearly easier to create a transferred layer ten of micrometers thick via anodization than by ion implantation and/or epitaxial deposition.

Details

Title
Annihilating Pores in the Desired Layer of a Porous Silicon Bilayer with Different Porosities for Layer Transfer
Author
C-C Chiang 1 ; Lee, Benjamin T-H 1 

 Department of Mechanical Engineering, National Central University, Taoyuan City, Taiwan 
Pages
1-9
Publication year
2019
Publication date
Sep 2019
Publisher
Nature Publishing Group
e-ISSN
20452322
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2283281401
Copyright
© 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.