Abstract

Gyrocopter or gyroplane is a type of rotorcraft that uses an unpowered main rotor in free autorotation to develop lift. Gyrocopter rotor blades have smaller cord length and longer span compared to helicopters blades. National Advisory Committee for Aeronautics (NACA) 8-H-12 gyrocopter rotor blade profile, unsymmetrical airfoil sections were used for this research. An attempt has been made in this work to investigate the effect of ribs and spar elements in response to applied load. Three possible modeling alternatives were studied to predict the actual induced stress and deformation of the blade: Model I is by considering the blade shell part only, Model II is blade shell with 25 numbers of ribs and without the spar element and Model III is blade shell with 25 numbers of ribs and with spar element. The rotor blade was sized based on single seat open frame and high-wind-start gyrocopter. Structural static analysis has been carried out to evaluate the strength of composite rotor blade using ANSYS Workbench 15. The results show that among these three proposed models; Model III had registered minimum Von Mises stress and deformation. Also the result reveals that by considering ribs and spar element during analysis of gyrocopter blade is crucial because, it will help to know the actual induced stress and deformation. The predicted value of induced stress and deformation is closer to the actual values will help the designer not to overdesign the parts. Consequently, the main drawbacks related to overdesign increase in weight and cost will be minimized; thereby the product operational efficiency will be improved.

Details

Title
Design of Composite Gyrocopter Main Rotor Blade Involving Rib and Spar Elements
Author
Degu, Y M; Alebel, D
Pages
94-106
Publication year
2019
Publication date
2019
Publisher
Association of Engineering, Project, & Production Management
ISSN
22216529
e-ISSN
22238379
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2284148504
Copyright
© 2019. This work is published under http://creativecommons.org/licenses/by-nc-nd/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.