It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
The SPT2 approach is based on the scaled particle theory and developed for the description of thermodynamic properties of hard sphere (HS) fluids in disordered porous media. Using this approach a porous medium is modelled as a quenched matrix of hard spheres (HS) or overlapping hard spheres (OHS). A hard sphere fluid immersed in a matrix can move in a void between matrix particles. A number of approximations were previously proposed within the SPT2 approach. Among these approximations, the SPT2b1 has been considered as the most successful and accurate one in a large range of fluid densities and for different matrix parameters. However, at high densities, it can lack accuracy, since it does not take into account that the maximum packing fraction of a HS fluid in a matrix is limited, not by the geometrical porosity of a matrix φ0 and the probe particle porosity φ, but by another type of porosity φ* introduced in our previous studies. The porosity φ* is related to the maximal adsorption capacity of a matrix and it is lower than φ0 and larger than φ. This can be crucial for a fluid in matrices of low porosities and at high fluid density, especially in the region near close-packing conditions. Therefore, the approximations SPT2b2 and SPT2b3 taking into account this feature were suggested, although they still needed a correction because of their poor accuracy. In the present study, we improved the versions of these approximations, named as SPT2b2* and SPT2b3*. We compare these different approximations with the results of computer simulations performed in the Monte Carlo grand-canonical ensemble. We test the SPT2 approach both for the one- and three-dimensional cases. We show that the SPT2b3* provides a very good description of the chemical potential of a confined fluid, which is better than others. This extends the applicability of the SPT2 approach to the studies of very dense fluids confined in disordered matrices.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer