Full Text

Turn on search term navigation

© 2019. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The study and control of air pollution involves measuring the structure of the atmospheric boundary layer (ABL) to understand the mechanisms of the interactions occurring between the atmospheric boundary layer and air pollution. Beijing, the capital of China, experienced heavy haze pollution in December 2016, and the city issued its first red-alert air pollution warning of the year (the highest PM2.5 concentrations were later found to exceed 450 µgm-3). In this paper, the vertical profiles of wind, temperature, humidity and the extinction coefficient (reflecting aerosol concentrations), as well as ABL heights and turbulence quantities under heavy haze pollution conditions, are analyzed, with data collected from lidar, wind profile radar (WPR), radiosondes, a 325 m meteorological tower (equipped with a 7-layer ultrasonic anemometer and 15-layer low-frequency wind, temperature, and humidity sensors) and ground observations. The ABL heights obtained by three different methods based on lidar extinction coefficient data (Hc) are compared with the heights calculated from radiosonde temperature data (Hθ), and their correlation coefficient can reach 72 %. Our results show that Hθ measured on heavy haze pollution days was generally lower than that measured on clean days without pollution, but Hc increased from clean to heavy pollution days. The time changes in friction velocity (u*) and turbulent kinetic energy (TKE) were clearly inversely correlated with PM2.5 concentration. Momentum and heat fluxes varied very little with altitude. The nocturnal sensible heat fluxes close to the Earth surface always stay positive. In the daytime of the haze pollution period, sensible heat fluxes were greatly reduced within 300 m of the ground. These findings will deepen our understanding of the boundary layer structure under heavy pollution conditions and improve the boundary layer parameterization in numerical models.

Details

Title
Multiple technical observations of the atmospheric boundary layer structure of a red-alert haze episode in Beijing
Author
Shi, Yu 1   VIAFID ORCID Logo  ; Hu, Fei 1 ; Fan, Guangqiang 2   VIAFID ORCID Logo  ; Zhang, Zhe 1   VIAFID ORCID Logo 

 State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China; University of Chinese Academy of Sciences, Beijing 100049, China 
 Key Laboratory of Environmental Optics and Technology, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei 230031, China 
Pages
4887-4901
Publication year
2019
Publication date
2019
Publisher
Copernicus GmbH
ISSN
18671381
e-ISSN
18678548
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2287838590
Copyright
© 2019. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.