Full text

Turn on search term navigation

© 2017. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The pathogenesis of primary sclerosing cholangitis (PSC) and the mechanistic link to inflammatory bowel disease remain ill‐defined. Ectonucleoside triphosphate diphosphohydrolase‐1 (ENTPD1)/clusters of differentiation (CD) 39, the dominant purinergic ecto‐enzyme, modulates intestinal inflammation. Here, we have explored the role of CD39 in biliary injury and fibrosis. The impact of CD39 deletion on disease severity was studied in multidrug resistance protein 2 (Mdr2)–/– and 3,5‐diethoxycarbonyl‐1,4‐dihydrocollidine mouse models of sclerosing cholangitis and biliary fibrosis. Antibody‐mediated CD8+ T‐cell depletion, selective gut decontamination, experimental colitis, and administration of stable adenosine triphosphate (ATP) agonist were performed. Retinoic acid‐induced gut imprinting on T cells was studied in vitro. Over half of Mdr2–/–;CD39–/– double mutants, expected by Mendelian genetics, died in utero. Compared to Mdr2–/–;CD39+/+, surviving Mdr2–/–;CD39–/– mice demonstrated exacerbated liver injury, fibrosis, and ductular reaction. CD39 deficiency led to a selective increase in hepatic CD8+ T cells and integrin α4β7, a T‐cell gut‐tropism receptor. CD8+ cell depletion in Mdr2–/–;CD39–/– mice diminished hepatobiliary injury and fibrosis. Treatment with antibiotics attenuated, whereas dextran sulfate sodium‐induced colitis exacerbated, liver fibrosis in Mdr2–/– mice. Colonic administration of αβ‐ATP into CD39‐sufficient Mdr2–/– mice triggered hepatic CD8+ cell influx and recapitulated the severe phenotype observed in Mdr2–/–;CD39–/– mice. In vitro, addition of ATP promoted the retinoic acid‐induced imprinting of gut‐homing integrin α4β7 on naive CD8+ cells. CD39 expression was relatively low in human normal or PSC livers but abundantly present on immune cells of the colon and further up‐regulated in samples of patients with inflammatory bowel disease. Conclusion: CD39 deletion promotes biliary injury and fibrosis through gut‐imprinted CD8+ T cells. Pharmacological modulation of purinergic signaling may represent a promising approach for the treatment of PSC. (Hepatology Communications 2017;1:957–972)

Details

Title
The ectonucleotidase ENTPD1/CD39 limits biliary injury and fibrosis in mouse models of sclerosing cholangitis
Author
Zhen‐Wei Peng 1 ; Rothweiler, Sonja 2 ; Wei, Guangyan 2 ; Ikenaga, Naoki 2 ; Liu, Susan B 2 ; Sverdlov, Deanna Y 2 ; Vaid, Kahini A 2 ; Longhi, Maria Serena 2   VIAFID ORCID Logo  ; Kuang, Ming 3 ; Robson, Simon C 2 ; Popov, Yury V 2   VIAFID ORCID Logo 

 Department of Oncology, First Affiliated Hospital of Sun Yat‐sen University, Guangzhou, China; Division of Gastroenterology and Hepatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 
 Division of Gastroenterology and Hepatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 
 Department of Oncology, First Affiliated Hospital of Sun Yat‐sen University, Guangzhou, China 
Pages
957-972
Section
Original Articles
Publication year
2017
Publication date
Nov 2017
Publisher
Wolters Kluwer Health Medical Research, Lippincott Williams & Wilkins
e-ISSN
2471254X
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2288160631
Copyright
© 2017. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.