It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Employing atomic force microscopy (AFM) to measure passive film thickness on stainless steel (SS) in aqueous solution is proposed. SUS304 austenite and SUS329J4L duplex SS samples partly covered by gold were set in a minicell. To remove the original film, the SS surface but gold was etched using dilute sulfuric acid. After cleaning, open circuit potential (OCP), and distance from the sample surface to the top of the gold were measured. They were then immersed in either 1.0% NaCl; 5.0% NaCl; or aqueous solution with pH ranging from 1.0 to 10.0 and measured again. Differences between the first and subsequent measures of OCP suggested a passive film had formed in solution with pH ranging from 2.8 to 10.0. Similarly, differences among AFM measures revealed the observed film thickness increased with increase in pH and with decrease in chloride ions. Also, film thickness in water was greater than that in a vacuum. Comparison of AFM measurements of passive film on the austenite and sigma phases in sensitized SUS329J4L duplex SS revealed the film was thinner on the sigma phase containing more chromium. Taken together, these findings suggest the proposed method is applicable for measuring the thickness of passive films in aqueous solution.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Department of Mechanical Systems Engineering, Hiroshima Institute of Technology, Hiroshima, Japan
2 Graduate School of Science and Technology, Hiroshima Institute of Technology, Hiroshima, Japan
3 Department of Rehabilitation, Hiroshima International University, Higashi-Hiroshima, Japan
4 School of Materials Science and Engineering, Tsinghua University, Beijing, China
5 School of Chemistry and Chemical Engineering, Guangxi University, Nanning, China
6 Laboratoire des Matériaux et Environnement, Faculté des Sciences, Université Ibn Zohr, Agadir, Morocco