Full text

Turn on search term navigation

© 2015. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

We review the hypothesized and observed effects of two of the major forms of genomic conflicts, genomic imprinting and sexual antagonism, on human health. We focus on phenotypes mediated by peptide and steroid hormones (especially oxytocin and testosterone) because such hormones centrally mediate patterns of physical and behavioral resource allocation that underlie both forms of conflict. In early development, a suite of imprinted genes modulates the human oxytocinergic system as predicted from theory, with paternally inherited gene expression associated with higher oxytocin production, and increased solicitation to mothers by infants. This system is predicted to impact health through the incompatibility of paternal-gene and maternal-gene optima and increased vulnerability of imprinted gene systems to genetic and epigenetic changes. Early alterations to oxytocinergic systems have long-term negative impacts on human psychological health, especially through their effects on attachment and social behavior. In contrast to genomic imprinting, which generates maladaptation along an axis of mother–infant attachment, sexual antagonism is predicted from theory to generate maladaptation along an axis of sexual dimorphism, modulated by steroid and peptide hormones. We describe evidence of sexual antagonism from studies of humans and other animals, demonstrating that sexually antagonistic effects on sex-dimorphic phenotypes, including aspects of immunity, life history, psychology, and behavior, are commonly observed and lead to forms of maladaptation that are demonstrated, or expected, to impact human health. Recent epidemiological and psychiatric studies of schizophrenia in particular indicate that it is mediated, in part, by sexually antagonistic alleles. The primary implication of this review is that data collection focused on (i) effects of imprinted genes that modulate the oxytocin system, and (ii) effects of sexually antagonistic alleles on sex-dimorphic, disease-related phenotypes will lead to novel insights into both human health and the evolutionary dynamics of genomic conflicts.

Details

Title
Genomic conflicts and sexual antagonism in human health: insights from oxytocin and testosterone
Author
Mokkonen, Mikael 1 ; Crespi, Bernard J 2 

 Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada; Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland 
 Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada 
Pages
307-325
Section
Reviews and Synthesis
Publication year
2015
Publication date
Apr 2015
Publisher
John Wiley & Sons, Inc.
e-ISSN
17524571
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2290031108
Copyright
© 2015. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.