It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
BES1 and BZR1 were originally identified as two key transcription factors specifically regulating brassinosteroid (BR)-mediated gene expression. They belong to a family consisting of six members, BES1, BZR1, BEH1, BEH2, BEH3, and BEH4. bes1 and bzr1 single mutants do not exhibit any characteristic BR phenotypes, suggesting functional redundancy of these proteins. Here, by generating higher order mutants, we show that a quintuple mutant is male sterile due to defects in tapetum and microsporocyte development in anthers. Our genetic and biochemical analyses demonstrate that BES1 family members also act as downstream transcription factors in the EMS1-TPD1-SERK1/2 pathway. Ectopic expression of both TPD1 and EMS1 in bri1-116, a BR receptor null mutant, leads to the accumulation of non-phosphorylated, active BES1, similar to activation of BES1 by BRI1-BR-BAK1 signaling. These data suggest that two distinctive receptor-like kinase-mediated signaling pathways share BES1 family members as downstream transcription factors to regulate different aspects of plant development.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou, China