You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
© 2015. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Abstract
Food availability is generally considered to determine breeding site selection and therefore plays an important role in hypotheses explaining the evolution of colony formation. Hypotheses trying to explain why birds join a colony usually assume that food is not limited, whereas those explaining variation in colony size suggest that food is under constraint. In this study, we investigate the composition and amount of food items not eaten by the nestlings and found in nest burrows of colonially nesting European bee-eaters (Merops apiaster). We aimed to determine whether this unconsumed food is an indicator of unlimited food supply, the result of mistakes during food transfer between parents and chicks or foraging selectivity of chicks. Therefore, we investigated the amount of dropped food for each nest in relation to reproductive performance and parameters reflecting parental quality. Our data suggest that parents carry more food to the nest than chicks can eat and, hence, food is not limited. This assumption is supported by the facts that there is a positive relationship between dropped food found in a nest and the number of fledglings, nestling age, and chick health condition and that the amount of dropped food is independent of colony size. There is variation in the amount of dropped food within colonies, suggesting that parent foraging efficiency may also be an important determinant. Pairs nesting in the center of a colony performed better than those nesting on the edge, which supports the assumption that quality differences between parents are important as well. However, dropped food cannot be used as an indicator of local food availability as (1) within-colony variation in dropped food is larger than between colony variation and, (2) the average amount of dropped food is not related to colony size.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Department of Integrative Biology and Evolution, Konrad Lorenz Institute of Ethology, University of Veterinary Medicine, Vienna, Austria
2 Institute of Zoology, Slovak Academy of Sciences, Bratislava, Slovakia