It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Aluminum-ion batteries (AIBs) are regarded as promising candidates for post-lithium-ion batteries due to their lack of flammability and electrochemical performance comparable to other metal-ion batteries. The lack of suitable cathode materials, however, has hindered the development of high-performing AIBs. Sulfur is a cost-efficient material, having distinguished electrochemical properties, and is considered an attractive cathode material for AIBs. Several pioneering reports have shown that aluminum-sulfur batteries (ASBs) exhibit superior electrochemical capacity over other cathode materials for AIBs. However, a rapid decay in the capacity is a huge barrier for their practical applications. Here, we have demonstrated systematically for the first time that the two-dimensional layered materials (e.g. MoS2, WS2, and BN) can serve as fixers of S and sulfide compounds during repeated charge/discharge processes; BN/S/C displays the highest capacity of 532 mAh g−1 (at a current density of 100 mA g−1) compared with the current state-of-the-art cathode material for AIBs. Further, we could improve the life-span of ASBs to an unprecedented 300 cycles with a high Coulombic efficiency of 94.3%; discharge plateaus at ~1.15 V vs. AlCl4−/Al was clearly observed during repeated charge/discharge cycling. We believe that this work opens up a new method for achieving high-performing ASBs.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details



1 Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul, Republic of Korea; Electronic Materials Center, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
2 Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul, Republic of Korea
3 Small & Medium Enterprises Support Center, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
4 Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacky University in Olomouc, Olomouc, Czech Republic
5 Electronic Materials Center, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea