Content area
Abstract
Abstract.
We show that the non-commutative Yang–Mills field forms an irreducible representation of the (undeformed) Lie algebra of rigid translations, rotations and dilatations. The non-commutative Yang–Mills action is invariant under combined conformal transformations of the Yang–Mills field and of the non-commutativity parameter \(\theta\). The Seiberg–Witten differential equation results from a covariant splitting of the combined conformal transformations and can be computed as the missing piece to complete a covariant conformal transformation to an invariance of the action.
Details
1 Institut für Theoretische Physik, Technische Universität Wien, Wiedner Hauptstraße 8–10, 1040 Wien, Austria , AT
2 Institut für Theoretische Physik, Universität Wien, Boltzmanngasse 5, 1090 Wien, Austria , AT
3 Physikalisches Institut der Universität Bonn, Nußallee 12, 53115 Bonn, Germany , DE





