Content area

Abstract

A golden age for heavy-quarkonium physics dawned a decade ago, initiated by the confluence of exciting advances in quantum chromodynamics (QCD) and an explosion of related experimental activity. The early years of this period were chronicled in the Quarkonium Working Group (QWG) CERN Yellow Report (YR) in 2004, which presented a comprehensive review of the status of the field at that time and provided specific recommendations for further progress. However, the broad spectrum of subsequent breakthroughs, surprises, and continuing puzzles could only be partially anticipated. Since the release of the YR, the BESII program concluded only to give birth to BESIII; the B-factories and CLEO-c flourished; quarkonium production and polarization measurements at HERA and the Tevatron matured; and heavy-ion collisions at RHIC have opened a window on the deconfinement regime. All these experiments leave legacies of quality, precision, and unsolved mysteries for quarkonium physics, and therefore beg for continuing investigations at BESIII, the LHC, RHIC, FAIR, the Super Flavor and/or Tau–Charm factories, JLab, the ILC, and beyond. The list of newly found conventional states expanded to include hc(1P), χc2(2P), \(B_{c}^{+}\), and ηb(1S). In addition, the unexpected and still-fascinating X(3872) has been joined by more than a dozen other charmonium- and bottomonium-like “XYZ” states that appear to lie outside the quark model. Many of these still need experimental confirmation. The plethora of new states unleashed a flood of theoretical investigations into new forms of matter such as quark–gluon hybrids, mesonic molecules, and tetraquarks. Measurements of the spectroscopy, decays, production, and in-medium behavior of \(c\bar{c}\), \(b\bar{b}\), and \(b\bar{c}\) bound states have been shown to validate some theoretical approaches to QCD and highlight lack of quantitative success for others. Lattice QCD has grown from a tool with computational possibilities to an industrial-strength effort now dependent more on insight and innovation than pure computational power. New effective field theories for the description of quarkonium in different regimes have been developed and brought to a high degree of sophistication, thus enabling precise and solid theoretical predictions. Many expected decays and transitions have either been measured with precision or for the first time, but the confusing patterns of decays, both above and below open-flavor thresholds, endure and have deepened. The intriguing details of quarkonium suppression in heavy-ion collisions that have emerged from RHIC have elevated the importance of separating hot- and cold-nuclear-matter effects in quark–gluon plasma studies. This review systematically addresses all these matters and concludes by prioritizing directions for ongoing and future efforts.

Details

Title
Heavy quarkonium: progress, puzzles, and opportunities
Author
Brambilla, N 1 ; Eidelman, S 2 ; Heltsley, B K 3 ; Vogt, R 4 ; Bodwin, G T 5 ; Eichten, E 6 ; Frawley, A D 7 ; Meyer, A B 8 ; Mitchell, R E 9 ; Papadimitriou, V 6 ; Petreczky, P 10 ; Petrov, A A 11 ; Robbe, P 12 ; Vairo, A 1 ; Andronic, A 13 ; Arnaldi, R 14 ; Artoisenet, P 15 ; Bali, G 16 ; Bertolin, A 17 ; Bettoni, D 18 ; Brodzicka, J 19 ; Bruno, G E 20 ; Caldwell, A 21 ; Catmore, J 22 ; C-H, Chang 23 ; K-T, Chao 24 ; Chudakov, E 25 ; Cortese, P 14 ; Crochet, P 26 ; Drutskoy, A 27 ; Ellwanger, U 28 ; Faccioli, P 29 ; Mokhtar, A Gabareen 30 ; X Garcia i Tormo 31 ; Hanhart, C 32 ; Harris, F A 33 ; Kaplan, D M 34 ; Klein, S R 35 ; Kowalski, H 8 ; J-P Lansberg 36 ; Levichev, E 37 ; Lombardo, V 38 ; Lourenço, C 39 ; Maltoni, F 40 ; Mocsy, A 41 ; Mussa, R 14 ; Navarra, F S 42 ; Negrini, M 18 ; Nielsen, M 42 ; Olsen, S L 43 ; Pakhlov, P 44 ; Pakhlova, G 44 ; Peters, K 13 ; Polosa, A D 45 ; Qian, W 46 ; J-W Qiu 47 ; Rong, G 48 ; Sanchis-Lozano, M A 49 ; Scomparin, E 14 ; Senger, P 13 ; Simon, F 50 ; Stracka, S 51 ; Sumino, Y 52 ; Voloshin, M 53 ; Weiss, C 25 ; Wöhri, H K 29 ; C-Z, Yuan 48 

 Physik-Department, Technische Universität München, Garching, Germany 
 Budker Institute of Nuclear Physics, Novosibirsk, Russia; Novosibirsk State University, Novosibirsk, Russia 
 Cornell University, Ithaca, NY, USA 
 Physics Division, Lawrence Livermore National Laboratory, Livermore, CA, USA; Physics Department, University of California at Davis, Davis, CA, USA 
 High Energy Physics Division, Argonne National Laboratory, Argonne, IL, USA 
 Fermi National Accelerator Laboratory, Batavia, IL, USA 
 Physics Department, Florida State University, Tallahassee, FL, USA 
 Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany 
 Indiana University, Bloomington, IN, USA 
10  Physics Department, Brookhaven National Laboratory, Upton, NY, USA 
11  Department of Physics and Astronomy, Wayne State University, Detroit, MI, USA 
12  Laboratoire de l’Accélérateur Linéaire, IN2P3/CNRS and Université Paris-Sud 11, Centre Scientifique d’Orsay, Orsay Cedex, France 
13  GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany 
14  INFN Sezione di Torino, Torino, Italy 
15  Department of Physics, The Ohio State University, Columbus, OH, USA 
16  Institut für Theoretische Physik, Universität Regensburg, Regensburg, Germany 
17  INFN Sezione di Padova, Padova, Italy 
18  Università di Ferrara and INFN Sezione di Ferrara, Ferrara, Italy 
19  Institute of Nuclear Physics, Polish Academy of Sciences, Kraków, Poland 
20  Università di Bari and INFN Sezione di Bari, Bari, Italy 
21  Max Planck Institute for Physics, München, Germany 
22  Department of Physics, Lancaster University, Lancaster, UK 
23  CCAST (World Laboratory), Beijing, China; Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing, China 
24  Department of Physics, Peking University, Beijing, China 
25  Thomas Jefferson National Accelerator Facility, Newport News, VA, USA 
26  Clermont Université, Université Blaise Pascal, CNRS-IN2P3, LPC, Clermont-Ferrand, France 
27  University of Cincinnati, Cincinnati, OH, USA 
28  Laboratoire de Physique Théorique, Unité mixte de Recherche, CNRS, UMR 8627, Université de Paris-Sud, Orsay, France 
29  LIP, Lisbon, Portugal 
30  SLAC National Accelerator Laboratory, Stanford, CA, USA 
31  Department of Physics, University of Alberta, Edmonton, Alberta, Canada 
32  Institut für Kernphysik, Jülich Center for Hadron Physics, and Institute for Advanced Simulation, Forschungszentrum Jülich, Jülich, Germany 
33  Department of Physics and Astronomy, University of Hawaii, Honolulu, HI, USA 
34  Illinois Institute of Technology, Chicago, IL, USA 
35  Lawrence Berkeley National Laboratory, Berkeley, CA, USA 
36  IPNO, Université Paris-Sud 11, CNRS/IN2P3, Orsay, France; Centre de Physique Théorique, École Polytechnique, CNRS, Palaiseau, France 
37  Budker Institute of Nuclear Physics, Novosibirsk, Russia 
38  INFN Sezione di Milano, Milano, Italy 
39  CERN, Geneva 23, Switzerland 
40  Center for Cosmology, Particle Physics and Phenomenology, Université Catholique de Louvain, Louvain-la-Neuve, Belgium 
41  Department of Math and Science, Pratt Institute, Brooklyn, NY, USA 
42  Instituto de Física, Universidade de São Paulo, São Paulo, SP, Brazil 
43  Department of Physics & Astronomy, Seoul National University, Seoul, Korea 
44  Institute for Theoretical and Experimental Physics, Moscow, Russia 
45  INFN Sezione di Roma, Roma, Italy 
46  Laboratoire de l’Accélérateur Linéaire, IN2P3/CNRS and Université Paris-Sud 11, Centre Scientifique d’Orsay, Orsay Cedex, France; Department of Engineering Physics, Tsinghua University, Beijing, China 
47  Physics Department, Brookhaven National Laboratory, Upton, NY, USA; C.N. Yang Institute for Theoretical Physics, Stony Brook University, Stony Brook, NY, USA 
48  Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China 
49  Instituto de Física Corpuscular (IFIC) and Departamento de Física Teórica, Centro Mixto Universitat de Valencia-CSIC, Burjassot, Valencia, Spain 
50  Max Planck Institute for Physics, München, Germany; Excellence Cluster ‘Universe’, Technische Universität München, Garching, Germany 
51  INFN Sezione di Milano, Milano, Italy; Dipartimento di Fisica, Università di Milano, Milano, Italy 
52  Department of Physics, Tohoku University, Sendai, Japan 
53  William I. Fine Theoretical Physics Institute, School of Physics and Astronomy, University of Minnesota, Minneapolis, MN, USA 
Pages
1-178
Publication year
2011
Publication date
Feb 2011
Publisher
Springer Nature B.V.
ISSN
14346044
e-ISSN
14346052
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2294058883
Copyright
The European Physical Journal C is a copyright of Springer, (2011). All Rights Reserved.