It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Glioblastomas are the most common and deadly form of primary brain cancer in adults. Current treatment strategies are aggressive, including a combination of surgical resection, radiotherapy, and chemotherapy. However, median patient survival has remained stagnant at 12 to 15 months for the last several decades. This dismal patient outcome has prompted efforts to understand the unique characteristics of these tumors, since traditional therapeutics have not been efficacious. Extensive invasion is a salient feature of glioblastomas that significantly diminishes the effectiveness of current treatment strategies and is ultimately the cause of tumor recurrence within 2 years in approximately 80% of patients. While progress has been made with regard to defining the niches in which invasion occurs, there are still large gaps in our understanding of the molecules within the brain environment that stimulate glioblastoma cell invasion. Around 90% of all glioblastomas grow in the cerebral cortex, an area of the brain that is densely innervated by neurotransmitter projections. Surprisingly, there have been limited efforts to determine if these neurotransmitters influence glioblastoma invasion.
Here, I demonstrate that glioblastoma cells express functional acetylcholine receptors (AChRs). Activation of these receptors causes a Ca2+ influx and mediates an increase in matrix metalloproteinase-9 (MMP-9) release that led to enhanced invasive potential. Additionally, I found that glioblastoma cells express other components of ACh signaling, suggesting the presence of an autocrine/paracrine ACh signaling loop in glioblastomas.
Secondly, I found that tumor-derived choline is a potential contributor to pyramidal neuron hyperexcitability in peritumoral cortex via upregulation and over-activation of alpha 7 nicotinic acetylcholine receptors (α7nAChRs). This is a novel finding that adds to our understanding of the etiology of tumor-associated seizures, which are a common co-morbidity in glioblastoma.
I was also involved in the development of an improved in vitro migration device that affords rapid customization and chronic, stable gradients of multiple chemoattractants simultaneously. In comparison to traditional migration assays, this device more closely resembles the complex environments that glioblastoma cells encounter in vivo, while providing the easy-of-use and manipulability of in vitro assays. The advantages of this novel device could allow for a better approach to therapeutic development, not only in glioblastoma but also in the field of biomedical research as a whole.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer





