Full Text

Turn on search term navigation

© 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal malignancies. Tumor-derived extracellular vesicles (EVs) induce pre-metastatic niche formation to promote metastasis. We isolated EVs from a highly-metastatic pancreatic cancer cell line and patient-derived primary cancer cells by ultracentrifugation. The protein content of EVs was analyzed by mass spectrometry. The effects of PDAC-derived EVs on natural kill (NK) cells were investigated by flow cytometry. The serum EVs’ TGF-β1 levels were quantified by ELISA. We found that integrins were enriched in PDAC-derived EVs. The expression of NKG2D, CD107a, TNF-α, and INF-γ in NK cells was significantly downregulated after co-culture with EVs. NK cells also exhibited decreased levels of CD71 and CD98, as well as impaired glucose uptake ability. In addition, NK cell cytotoxicity against pancreatic cancer stem cells was attenuated. Moreover, PDAC-derived EVs induced the phosphorylation of Smad2/3 in NK cells. Serum EVs’ TGF-β1 was significantly increased in PDAC patients. Our findings emphasize the immunosuppressive role of PDAC-derived EVs and provide new insights into our understanding of NK cell dysfunction regarding pre-metastatic niche formation in PDAC.

Details

Title
Tumor-Derived Extracellular Vesicles Inhibit Natural Killer Cell Function in Pancreatic Cancer
Author
Zhao, Jiangang; Schlößer, Hans A; Wang, Zhefang; Qin, Jie; Li, Jiahui; Popp, Felix; Popp, Marie Christine; Alakus, Hakan; Seung-Hun Chon; Hansen, Hinrich P; Neiss, Wolfram F; Karl-Walter Jauch; Bruns, Christiane J; Zhao, Yue
Publication year
2019
Publication date
Jun 2019
Publisher
MDPI AG
e-ISSN
20726694
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2296834299
Copyright
© 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.