Full text

Turn on search term navigation

© 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Hematopoietic stem cells (HSCs) are multipotent, self-renewing cells that can differentiate into myeloid or lymphoid cells. The mobilization and differentiation processes are affected by the external environment, such as extracellular matrix and soluble molecules in the niche, where the lipid rafts (LRs) of the HSCs act as the receptors and control platforms for these effectors. LRs are membrane microdomains that are enriched in cholesterol, sphingolipid, and proteins. They are involved in diverse cellular processes including morphogenesis, cytokinesis, signaling, endocytic events, and response to the environment. They are also involved in different types of diseases, such as cancer, Alzheimer’s, and prion disease. LR clustering and disruption contribute directly to the differentiation, homing, hibernation, or mobilization of HSCs. Thus, characterization of LR integrity may provide a promising approach to controlling the fate of stem cells for clinical applications. In this review, we show the critical role of LR modification (clustering, disruption, protein incorporation, and signal responding) in deciding the fate of HSCs, under the effect of soluble cytokines such as stem cell factor (SCF), transforming growth factor- β (TGF-β), hematopoietic-specific phospholipase Cβ2 (PLC-β2), and granulocyte colony-stimulating factor (G-CSF).

Details

Title
Role of Lipid Rafts in Hematopoietic Stem Cells Homing, Mobilization, Hibernation, and Differentiation
Author
Alomari, Munther; Almohazey, Dana; Sarah Ameen Almofty; Firdos Alam Khan; Mohammad Al hamad; Ababneh, Deena
Publication year
2019
Publication date
Jun 2019
Publisher
MDPI AG
e-ISSN
20734409
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2296887113
Copyright
© 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.