Full text

Turn on search term navigation

© 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

This study aims to evaluate the effects of ultrasonication (US) on the conformational, microstructural, and antioxidant properties of konjac glucomannan (KGM). US treatment with a 20-kHz and 750-W ultrasonic processor at 60% amplitude was applied for partial degradation of KGM with an average molecular weight (MW) of 823.4 kDa. Results indicated that the US treatment caused dramatic reduction in the MW, apparent viscosity, hydrodynamic radius, and z-average mean radius of gyration. The flexibility of chain conformation of native KGM was slightly increased during the US treatment. According to electronic microscopic imaging, the compact, smooth, and orderly fibrous strings formed by KGM were changed to amorphous, porous flakes and globular particles after US treatment. KGM and its US-treated fractions showed moderate radical-scavenging and ferric-reducing antioxidant activity. US degradation of KGM affected these activities either positively or negatively, depending on the US treatment period. In summary, ultrasonic degradation of KGM caused changes in its conformation characteristics, microstructure, and antioxidant activities.

Details

Title
Effects of Ultrasonication on the Conformational, Microstructural, and Antioxidant Properties of Konjac Glucomannan
Author
Jun-Yi, Yin; Lu-Yao, Ma; Ka-Chai Siu; Jian-Yong, Wu
Publication year
2019
Publication date
Jan 2019
Publisher
MDPI AG
e-ISSN
20763417
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2297044526
Copyright
© 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.