Full text

Turn on search term navigation

© 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Internal combustion engines (ICEs) are the primary source of power generation in today’s driving vehicles. They convert the chemical energy of the fuel into the mechanical energy which is used to drive the vehicle. In this process of energy conversion, several parameters cause the engine to vibrate, which significantly deteriorate the efficiency and service life of the engine. The present study aims to gather all the recent works conducted to reduce and isolate engine vibration, before transmitting to other vehicle parts such as drive shafts and chassis. For this purpose, a background history of the ICEs, as well as the parameters associated with their vibration, will be introduced. The body of the paper is divided into three main parts: First, a brief summary of the vibration theory in fault detection of ICEs is provided. Then, vibration reduction using various mechanisms and engine modifications is reviewed. Next, the effect of using different biofuels and fuel additives, such as alcohols and hydrogen, is discussed. Finally, the paper ends with a conclusion, summarizing the most recent methods and approaches that studied the vibration and noise in the ICEs.

Details

Title
Performance Enhancement of Internal Combustion Engines through Vibration Control: State of the Art and Challenges
Author
Mahdisoozani, Hojat; Mohsenizadeh, Mehrdad; Bahiraei, Mehdi; Kasaeian, Alibakhsh; Daneshvar, Armin; Goodarzi, Marjan; Safaei, Mohammad Reza
Publication year
2019
Publication date
Jan 2019
Publisher
MDPI AG
e-ISSN
20763417
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2297044531
Copyright
© 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.