It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Deciphering regulatory events that drive malignant transformation represents a major challenge for systems biology. Here, we analyzed genome-wide transcription profiling of an in vitro cancerous transformation process. We focused on a cluster of genes whose expression levels increased as a function of p53 and p16INK4A tumor suppressors inactivation. This cluster predominantly consists of cell cycle genes and constitutes a signature of a diversity of cancers. By linking expression profiles of the genes in the cluster with the dynamic behavior of p53 and p16INK4A, we identified a promoter architecture that integrates signals from the two tumor suppressive channels and that maps their activity onto distinct levels of expression of the cell cycle genes, which, in turn, correspond to different cellular proliferation rates. Taking components of the mitotic spindle as an example, we experimentally verified our predictions that p53-mediated transcriptional repression of several of these novel targets is dependent on the activities of p21, NFY, and E2F. Our study demonstrates how a well-controlled transformation process allows linking between gene expression, promoter architecture, and activity of upstream signaling molecules.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel; Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot, Israel
2 Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
3 Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot, Israel
4 Dipartimento di Scienze Biomolecolare e Biotecnologie, Universita di Milano, Milan, Italy
5 Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel