Full text

Turn on search term navigation

© 2013. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Species distribution models (SDM) are tools used to determine environmental features that influence the geographic distribution of species' abundance and have been used to analyze presence-only records. Analysis of presence-only records may require correction for nondetection sampling bias to yield reliable conclusions. In addition, individuals of some species of animals may be highly aggregated and standard SDMs ignore environmental features that may influence aggregation behavior.We contend that nondetection sampling bias can be treated as missing data. Statistical theory and corrective methods are well developed for missing data, but have been ignored in the literature on SDMs. We developed a marked inhomogeneous Poisson point process model that accounted for nondetection and aggregation behavior in animals and tested our methods on simulated data.Correcting for nondetection sampling bias requires estimates of the probability of detection which must be obtained from auxiliary data, as presence-only data do not contain information about the detection mechanism. Weighted likelihood methods can be used to correct for nondetection if estimates of the probability of detection are available. We used an inhomogeneous Poisson point process model to model group abundance, a zero-truncated generalized linear model to model group size, and combined these two models to describe the distribution of abundance. Our methods performed well on simulated data when nondetection was accounted for and poorly when detection was ignored.We recommend researchers consider the effects of nondetection sampling bias when modeling species distributions using presence-only data. If information about the detection process is available, we recommend researchers explore the effects of nondetection and, when warranted, correct the bias using our methods. We developed our methods to analyze opportunistic presence-only records of whooping cranes (Grus americana), but expect that our methods will be useful to ecologists analyzing opportunistic presence-only records of other species of animals.

Details

Title
Nondetection sampling bias in marked presence-only data
Author
Hefley, Trevor J 1 ; Tyre, Andrew J 2 ; Baasch, David M 3 ; Blankenship, Erin E 4 

 Department of Statistics and School of Natural Resources, University of Nebraska–Lincoln, Lincoln, Nebraska 
 School of Natural Resources, University of Nebraska–Lincoln, Lincoln, Nebraska 
 Headwaters Corporation, Kearney, Nebraska 
 Department of Statistics, University of Nebraska–Lincoln, Lincoln, Nebraska 
Pages
5225-5236
Section
Original Research
Publication year
2013
Publication date
Dec 2013
Publisher
John Wiley & Sons, Inc.
e-ISSN
20457758
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2299163755
Copyright
© 2013. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.