Full text

Turn on search term navigation

© 2014. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Chronic inflammation is one of the main causes of cancer, yet the molecular mechanism underlying this effect is not fully understood. In this study, we identified FAT10 as a potential target gene of STAT3, the expression of which is synergistically induced by NFκB co-stimulation. STAT3 binding stabilizes NFκB on the FAT10 promoter and leads to maximum induction of FAT10 gene expression. Increased FAT10 represses the transcriptional activity of the tumor suppressor p53, a protein that accelerates the protein degradation of FAT10. This FAT10-p53 double-negative regulation is critical in the control of tumorigenesis, as overexpressed FAT10 facilitates the tumor progression in the solid tumor model. In conclusion, transcriptional synergy between STAT3 and NFκB functions to put weight on FAT10 in the mutually inhibitory FAT10-p53 regulatory loop and thus favors tumorigenesis under inflammatory conditions.

Details

Title
NFκB and STAT3 synergistically activate the expression of FAT10, a gene counteracting the tumor suppressor p53
Author
Choi, Yongwook 1 ; Kim, Jong Kyoung 2 ; Joo-Yeon Yoo 1 

 Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea 
 European Bioinformatics Institute, Wellcome Trust Genome Sciences Campus, Cambridge, UK 
Pages
642-655
Section
Research articles
Publication year
2014
Publication date
May 2014
Publisher
John Wiley & Sons, Inc.
ISSN
15747891
e-ISSN
18780261
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2299176176
Copyright
© 2014. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.