Full text

Turn on search term navigation

© 2018. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Land subsidence has been a significant problem in land reclaimed from the sea, and it is usually characterized by a differential settlement pattern due to locally unconsolidated marine sediments and fill materials. Time series Synthetic Aperture Radar Interferometry (InSAR) techniques based on distributed scatterers (DS), which can identify sufficient measurement points (MPs) when point-wise radar targets are lacking, have great potential to measure such differential reclamation settlement. However, the computational time cost has been the main drawback of current distributed scatterer interferometry (DSI) for its applications compared to the standard PSI analysis. In this paper, we adopted an improved DSI processing strategy for a fast and robust analysis of land subsidence in reclaimed regions, which is characterized by an integration of fast statistically homogeneous pixel selection based (FaSHPS-based) DS detection and eigendecomposition phase optimization. We demonstrate the advantages of the proposed DSI strategy in computational efficiency and deformation estimation reliability by applying it to two TerraSAR-X image data stacks from 2008 to 2009 to retrieve land subsidence over two typical reclaimed regions of Hong Kong International Airport (HKIA) and Hong Kong Science Park (HKSP). Compared with the state-of-the-art DSI methods, the proposed strategy significantly improves the computational efficiency, which is enhanced approximately 30 times in DS identification and 20 times in phase optimization. On average, the DSI strategy results in 7.8 and 3.7 times the detected number of MPs for HKIA and HKSP with respect to persistent scatter interferometry (PSI), which enables a very detailed characterization of locally differential settlement patterns. Moreover, the DSI-derived results agree well with the levelling survey measurements at HKIA, with a mean difference of 1.87 mm/yr and a standard deviation of 2.08 mm/yr. The results demonstrate that the proposed DSI strategy is effective at improving target density, accuracy and efficiency in monitoring ground deformation, particularly over reclaimed coastal areas.

Details

Title
Monitoring Coastal Reclamation Subsidence in Hong Kong with Distributed Scatterer Interferometry
Author
Sun, Qishi; Jiang, Liming; Jiang, Mi; Lin, Hui; Ma, Peifeng; Wang, Hansheng
Publication year
2018
Publication date
Nov 2018
Publisher
MDPI AG
e-ISSN
20724292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2303892937
Copyright
© 2018. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.