It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Coexistence of order and fluidity in soft matter often mimics that in biology, allowing for complex dynamics and applications-like displays. In active soft matter, emergent order can arise because of such dynamics. Powered by local energy conversion, this behavior resembles motions in living systems, like schooling of fish. Similar dynamics at cellular levels drive biological processes and generate macroscopic work. Inanimate particles capable of such emergent behavior could power nanomachines, but most active systems have biological origins. Here we show that thousands-to-millions of topological solitons, dubbed “skyrmions”, while each converting macroscopically-supplied electric energy, exhibit collective motions along spontaneously-chosen directions uncorrelated with the direction of electric field. Within these “schools” of skyrmions, we uncover polar ordering, reconfigurable multi-skyrmion clustering and large-scale cohesion mediated by out-of-equilibrium elastic interactions. Remarkably, this behavior arises under conditions similar to those in liquid crystal displays and may enable dynamic materials with strong emergent electro-optic responses.
While flocking and schooling are more often associated with birds and fish, these types of behaviour can also be observed in inanimate systems. Here the authors demonstrate schooling of topological solitons in a liquid crystal system powered by oscillating electric fields.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details

1 University of Colorado, Department of Physics and Materials Science and Engineering Program, Boulder, USA (GRID:grid.266190.a) (ISNI:0000000096214564)
2 University of Colorado, Department of Physics and Materials Science and Engineering Program, Boulder, USA (GRID:grid.266190.a) (ISNI:0000000096214564); University of Colorado, Department of Electrical, Computer, and Energy Engineering and Soft Materials Research Center, Boulder, USA (GRID:grid.266190.a) (ISNI:0000000096214564); National Renewable Energy Laboratory and University of Colorado, Renewable and Sustainable Energy Institute, Boulder, USA (GRID:grid.266190.a)