It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Synthesis of fluorogenic peptide substrate of HIV-I protease Dns-SQNYPIVWL which corresponds to the p17/p24 cleavage site for HIV-l protease have been performed. This fluorogenic substrate was based on the fluorescence resonance energy transfer between donor – Trp residue, and acceptor – dansyl group in the intact peptide. Hydrolysis of substrate by recombinant HIV-I protease resulted in the time-dependent increase of Trp fluorescence and decrease of dansyl fluorescence measured at 350 and 500 nm, respectively, due to the break of resonance energy transfer between donor and acceptor fluorophors. Hydrolysis of fluorogenic peptide substrate was studied also by reversed phase HPLC and two peptide fragments after cleavage of substrate have been detected. Kinetic constants of hydrolysis for this fluorogenic peptide substrate by HIV-I protease were calculated from Lineweaver – Burk plots: K
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer





