Full text

Turn on search term navigation

© 2017. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The biocomplexity of sediment communities along a 120 m transect near an arsenic-rich, shallow marine hydrothermal vent at Tutum Bay, Papua New Guinea was thoroughly examined. A count of macro- and meiofaunal organisms was combined with bacterial and eukaryotic SSU rRNA gene surveys to assess biodiversity. Each site along the transect had distinct microbial communities. Near-vent sites were more similar to each other than sites further from the vent. Some species, such as Ignavibacterium, Caldilinea, and Capitella were only found near-vent. Biodiversity generally increased with distance from the vent. The community composition responded to the presence of hydrothermal fluids with a clear correlation between temperature and thermophilic organisms. Primary production appeared to be a mix of chemo- and phototrophy. Association analyses suggest many potential interactions between organisms occur at certain sites, and that species distributions and interactions occur in the context of complex spatial relationships related to the geochemistry of the hydrothermal vent fluids. While Tutum Bay is heavily influenced by arsenic, no specific correlation between bacteria that metabolize arsenic and the concentration of different oxidation states of arsenic ions was observed, perhaps because very little of the arsenic present was bioavailable. The observed homogeneous distribution of arsenic reducers along the transect could be due to background arsenic metabolism. This study represents a holistic study of biocomplexity on a broad phylogenetic range across a 120m transect associated with a marine shallow-water hydrothermal vent.

Details

Title
Changes in Eukaryotic and Bacterial Communities along a 120 m Transect Associated with a Shallow Marine Hydrothermal Vent
Author
Rubelmann, Haydn; Karlen, David J; Garey, James R
Section
Original Research ARTICLE
Publication year
2017
Publication date
Jun 6, 2017
Publisher
Frontiers Research Foundation
e-ISSN
2296-7745
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2307745296
Copyright
© 2017. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.