Content area
Abstract
Excellent energy resolution is one of the primary advantages of electroluminescent high-pressure xenon TPCs. These detectors are promising tools in searching for rare physics events, such as neutrinoless double-beta decay (ββ0ν), which require precise energy measurements. Using the NEXT-White detector, developed by the NEXT (Neutrino Experiment with a Xenon TPC) collaboration, we show for the first time that an energy resolution of 1% FWHM can be achieved at 2.6 MeV, establishing the present technology as the one with the best energy resolution of all xenon detectors for ββ0ν searches.
Details
1 Instituto de Física Corpuscular (IFIC), CSIC & Universitat de Valéncia, Paterna, Spain
2 Instituto Gallego de Física de Altas Energías, Univ. de Santiago de Compostela, Santiago de Compostela, Spain; Donostia International Physics Center (DIPC), Donostia-San Sebastian, Spain
3 Donostia International Physics Center (DIPC), Donostia-San Sebastian, Spain; Ikerbasque, Basque Foundation for Science, Bilbao, Spain
4 Instituto Gallego de Física de Altas Energías, Univ. de Santiago de Compostela, Santiago de Compostela, Spain
5 Instituto de Física Corpuscular (IFIC), CSIC & Universitat de Valéncia, Paterna, Spain; Instituto Gallego de Física de Altas Energías, Univ. de Santiago de Compostela, Santiago de Compostela, Spain; Weizmann Institute of Science, Rehovot, Israel
6 Donostia International Physics Center (DIPC), Donostia-San Sebastian, Spain
7 Argonne National Laboratory, Argonne, IL, U.S.A.
8 Nuclear Engineering Unit, Faculty of Engineering Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
9 Pacific Northwest National Laboratory (PNNL), Richland, WA, U.S.A.
10 Institute of Nanostructures, Nanomodelling and Nanofabrication (i3N), Universidade de Aveiro, Aveiro, Portugal
11 Instituto de Instrumentación para Imagen Molecular (I3M), Centro Mixto CSIC — Universitat Politécnica de Valéncia, Valencia, Spain
12 LIP, Department of Physics, University of Coimbra, Coimbra, Portugal
13 Department of Physics, University of Texas at Arlington, Arlington, TX, U.S.A.
14 Laboratorio de Física Nuclear y Astropartículas, Universidad de Zaragoza, Zaragoza, Spain
15 Department of Physics, Harvard University, Cambridge, MA, U.S.A.
16 Fermi National Accelerator Laboratory, Batavia, IL, U.S.A.
17 LIBPhys, Physics Department, University of Coimbra, Coimbra, Portugal
18 Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA, U.S.A.
19 Centro de Investigación en Ciencias Básicas y Aplicadas, Universidad Antonio Nariño, Sede Circunvalar, Bogotá, Colombia
20 Department of Physics and Astronomy, Iowa State University, Ames, IA, U.S.A.
21 Donostia International Physics Center (DIPC), Donostia-San Sebastian, Spain; Instituto de Física Corpuscular (IFIC), CSIC & Universitat de Valéncia, Paterna, Spain
22 Nuclear Engineering Unit, Faculty of Engineering Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel; Nuclear Research Center Negev, Beer-Sheva, Israel
23 Departamento de Física Teórica, Universidad Autónoma de Madrid, Madrid, Spain
24 Laboratorio Subterráneo de Canfranc, Huesca, Spain
25 Escola Politècnica Superior, Universitat de Girona, Girona, Spain
26 Donostia International Physics Center (DIPC), Donostia-San Sebastian, Spain; Laboratorio Subterráneo de Canfranc, Huesca, Spain
27 Department of Physics and Astronomy, Texas A&M University, College Station, TX, U.S.A.; University of Texas at Austin, Austin, U.S.A.
28 Department of Physics and Astronomy, Texas A&M University, College Station, TX, U.S.A.




