It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
MicroRNAs, a class of small, non-coding RNAs, play important roles in plant growth, development and stress response by negatively regulating gene expression. Moringa oleifera Lam. plant has many medical and nutritional uses; however, little attention has been dedicated to its potential for the bio production of active compounds. In this study, 431 conserved and 392 novel microRNA families were identified and 9 novel small RNA libraries constructed from leaf, and cold stress treated callus, using high-throughput sequencing technology. Based on the M. oleifera genome, the microRNA repertoire of the seed was re-evaluated. qRT-PCR analysis confirmed the expression pattern of 11 conserved microRNAs in all groups. MicroRNA159 was found to be the most abundant conserved microRNA in leaf and callus, while microRNA393 was most abundantly expressed in the seed. The majority of predicted microRNA target genes were transcriptional factors involved in plant reproduction, growth/development and abiotic/biotic stress response. In conclusion, this is the first comprehensive analysis of microRNAs in M. oleifera leaf and callus which represents an important addition to the existing M. oleifera seed microRNA database and allows for possible exploitation of plant microRNAs induced with abiotic stress, as a tool for bio-enrichment with pharmacologically important phytochemicals.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details



1 Mir-Nat s.r.l., Rome, Italy; Bioinformatics Unit, Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University London, London, UK
2 Mir-Nat s.r.l., Rome, Italy; Department of Biology, University of Rome Tor Vergata, Rome, Italy
3 CIMETA, University of Rome Tor Vergata, Rome, Italy
4 Department of Biology, University of Rome Tor Vergata, Rome, Italy
5 Mir-Nat s.r.l., Rome, Italy; CIMETA, University of Rome Tor Vergata, Rome, Italy