It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Gas exchange and chlorophyll fluorescence analysis were carried out to investigate the diurnal variations in photosynthesis in leaves of rice (Oryza sativa L.). Leaf CO2 photosynthetic rate (Pn) showed a bimodal diurnal pattern and midday depression in Pn was observed at 13:00 h. Depression in Pn at midday was mostly attributed to stomatal limitation since the reduction in Pn was followed by the significant reduction in stomatal conductance (Gs). Midday depression in Pn was found to be associated with reversible inactivation of Photo-system II (PS II) reaction centers and increase of photo-inhibition in response to high intensity as evidenced by the maximum efficiency of PS II (Fv/Fm) decreased with increase of light intensity from 6:00 h to 16:00 h of a day. The minimal fluorescence (Fo) gradually increased with increasing light intensity and reached its highest value at 13:00 h and on contrary the maximal fluorescence (Fm) decreased and reached its lowest value at 13:00 h. Quantification of several chlorophyll fluorescence parameters (JIP-test) like area above the fluorescence curve between Fo and Fm, phenomenological energy fluxes like electron transport per cross section (ETo/CS), active PS II reaction center per exited cross-section (RC/CSo) and performance index (Pi) were low in early morning, increasing with time and reaching a maximum at 9:00 h subsequently decreasing and reaching a minimum value at 13.00 h. On contrary the dissipation per cross-section (Dio/CS) gradually increased with increasing light intensity and reached its highest value at 13:00 h. It is likely that PS II down-regulation and heat dissipation co-operated together to prevent the chloroplast from photo damage.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer