It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Electric switching of non-polar bulk crystals is shown to occur when domain walls are polar in ferroelastic materials and when rough surfaces with steps on an atomic scale promote domain switching. All domains emerging from surface nuclei possess polar domain walls. The progression of domains is then driven by the interaction of the electric field with the polarity of domain boundaries. In contrast, smooth surfaces with higher activation barriers prohibit effective domain nucleation. We demonstrate the existence of an electrically driven ferroelectric hysteresis loop in a non-ferroelectric, ferroelastic bulk material.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an, China; Department of Earth Sciences, University of Cambridge, Cambridge, UK
2 State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an, China