Full text

Turn on search term navigation

This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication: https://creativecommons.org/publicdomain/zero/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Background

Acute kidney injury (AKI) is an adverse event that carries significant morbidity. Given that interventions after AKI occurrence have poor performance, there is substantial interest in prediction of AKI prior to its diagnosis. However, integration of real-time prognostic modeling into the electronic health record (EHR) has been challenging, as complex models increase the risk of error and complicate deployment. Our goal in this study was to create an implementable predictive model to accurately predict AKI in hospitalized patients and could be easily integrated within an existing EHR system.

Methods and findings

We performed a retrospective analysis looking at data of 169,859 hospitalized adults admitted to one of three study hospitals in the United States (in New Haven and Bridgeport, Connecticut) from December 2012 to February 2016. Demographics, medical comorbidities, hospital procedures, medications, and laboratory data were used to develop a model to predict AKI within 24 hours of a given observation. Outcomes of AKI severity, requirement for renal replacement therapy, and mortality were also measured and predicted. Models were trained using discrete-time logistic regression in a subset of Hospital 1, internally validated in the remainder of Hospital 1, and externally validated in Hospital 2 and Hospital 3. Model performance was assessed via the area under the receiver-operator characteristic (ROC) curve (AUC). The training set cohort contained 60,701 patients, and the internal validation set contained 30,599 patients. External validation data sets contained 43,534 and 35,025 patients. Patients in the overall cohort were generally older (median age ranging from 61 to 68 across hospitals); 44%–49% were male, 16%–20% were black, and 23%–29% were admitted to surgical wards. In the training set and external validation set, 19.1% and 18.9% of patients, respectively, developed AKI. The full model, including all covariates, had good ability to predict imminent AKI for the validation set, sustained AKI, dialysis, and death with AUCs of 0.74 (95% CI 0.73–0.74), 0.77 (95% CI 0.76–0.78), 0.79 (95% CI 0.73–0.85), and 0.69 (95% CI 0.67–0.72), respectively. A simple model using only readily available, time-updated laboratory values had very similar predictive performance to the complete model. The main limitation of this study is that it is observational in nature; thus, we are unable to conclude a causal relationship between covariates and AKI and do not provide an optimal treatment strategy for those predicted to develop AKI.

Conclusions

In this study, we observed that a simple model using readily available laboratory data could be developed to predict imminent AKI with good discrimination. This model may lend itself well to integration into the EHR without sacrificing the performance seen in more complex models.

Details

Title
A simple real-time model for predicting acute kidney injury in hospitalized patients in the US: A descriptive modeling study
Author
Simonov, Michael; Ugwuowo, Ugochukwu; Moreira, Erica; Yamamoto, Yu; Biswas, Aditya; Martin, Melissa; Testani, Jeffrey; F Perry Wilson
First page
e1002861
Section
Research Article
Publication year
2019
Publication date
Jul 2019
Publisher
Public Library of Science
ISSN
15491277
e-ISSN
15491676
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2314539384
Copyright
This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication: https://creativecommons.org/publicdomain/zero/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.