Full Text

Turn on search term navigation

Copyright © 2019 Yunpu Wu et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. http://creativecommons.org/licenses/by/4.0/

Abstract

Health monitoring and fault diagnosis of a high-speed train is an important research area in guaranteeing the safe and long-term operation of the high-speed railway. For a multichannel health monitoring system, a major technical challenge is to extract information from different channels with divergence patterns as a result of distinct types and layout of sensors. To this end, this paper proposes a novel group convolutional network based on synchrony information. The proposed method is able to gather signals with similar patterns and process these channels with specific groups of neurons while simultaneously assigning signals with significant difference to different groups. In this approach, the feature can be extracted more effectively and the performance can be improved, owing to the sharing of filters for similar patterns. The effectiveness of the method is validated on high-speed train fault dataset. Experiments show that the proposed model performs better than normal convolutions and normal group convolutions on this task, which achieves an accuracy of 98.27% (σ = 1.73) with good computational efficiency.

Details

Title
Fault Diagnosis of High-Speed Train Bogie Based on Synchrony Group Convolutions
Author
Wu, Yunpu  VIAFID ORCID Logo  ; Jin, Weidong; Ren, Junxiao; Zhang, Sun
Editor
Franco Concli
Publication year
2019
Publication date
2019
Publisher
John Wiley & Sons, Inc.
ISSN
10709622
e-ISSN
18759203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2315458847
Copyright
Copyright © 2019 Yunpu Wu et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. http://creativecommons.org/licenses/by/4.0/