Full text

Turn on search term navigation

© 2019. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The dc-link voltage balance and reactive power equilibrium of the cascaded H-bridge rectifier (CHBR) are the prerequisites for the safe and stable operation of the system. However, the conventional PI (Proportional-Integral) control strategy only puts emphasis on the CHBR dc-link voltage balance without taking into account its reactive power equilibrium under capacitive and inductive working conditions. For this reason, this paper has proposed a novel control strategy for the CHBR that can not only balance dc-link voltage, but also achieve reactive power equilibrium and eliminate the coupling effect between the voltage-balancing controller (VBC) and original system controller (OSC). The control strategy can achieve dc-link voltage balance and the reactive power equilibrium of the CHBR through modifying the active duty cycle by closed loop control, and adjusting the reactive duty cycle relatively according to the modifiable amount of the active duty cycle. Moreover, the strategy can eliminate the coupling effect between the VBC and OSC by the open loop control modification of the active and reactive duty cycle of any H-bridge module in CHBR. Simulations and experiments have shown that the proposed control strategy is feasible and effective in performing the CHBR dc-link voltage balance and reactive power equilibrium under all working conditions and load variations.

Details

Title
A Novel Control Strategy for DC-Link Voltage Balance and Reactive Power Equilibrium of a Single-Phase Cascaded H-Bridge Rectifier
Author
Luo, Chengwei; Luo, Derong; Huang, Shoudao; Wu, Gongping; Zhu, Hongzhang; He, Qianjun
First page
51
Publication year
2019
Publication date
2019
Publisher
MDPI AG
e-ISSN
19961073
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2316457084
Copyright
© 2019. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.