Content area

Abstract

The ever-growing popularity of computer science has fostered the need for computational thinking (CT), especially in K-12 education. Pedagogy that infuses CT, as well as reliable methods for assessing CT, remain open areas of research. This paper will describe a STEM outreach program where the __anonymized__ school district has partnered with __anonymized__ university. This program lasts four weeks and is designed to expose STEM subjects and careers to 5th-9th grade students through hands-on activities. The program covers a large range of areas, including robotics, computer programming, agriculture, food science, unmanned aerial vehicles, clean energy, and construction science. Educators, who are experts in the particular subject matter, are paired with small groups (2-4) of pre-service teachers to run each class (maximum size of 18). This allows pre-service teachers to get practical, hands-on experience, as well as to learn new STEM activities to include in their own future classrooms. This also gives an excellent teacher to student ratio, providing a one-on-one learning experience for program participants.

As part of the STEM program, we developed two interventions. The Saving the Martian (Mars) class was an intervention focused on 5th and 6th grade students and introduced CT using the Scratch programming environment. Many of the activities were modeled on situations or ideas taken from The Martian, by Andy Weir, to make them more interesting and exciting for the students. The Mighty Micro Controllers (MMC) class was an intervention for 7th-9th graders focused on teaching CT through programming Arduino Uno micro controllers using Scratch, as well as a small exposure to the Arduino IDE and text-based language. Overall, the format of this class included guided examples on how to create certain circuits and programs, followed by problem driven exploration to help enforce programming, electrical, and CT skills.

In order to measure student performance, we developed a self-efficacy survey (five point Likert scale) to collect attitudes towards students’ ability to think computationally and their problem solving skills. Our experiment was carried out in a pre-post survey format. Out of 110 students between both interventions, one student was excluded for opting out of the survey, one student was excluded for missing the pre-survey, and three students were excluded for having incomplete responses. A Chronbach’s Alpha of .872 on the pre-survey and .908 on the post-survey shows that our survey was reliable. The results of the pre- and post-surveys will be discussed in relation to the following goals: 1. Are the developed curricula effective at improving student self-efficacy in CT? 2. Is our survey a reliable and effective way of measuring student self-efficacy in CT? 3. Illustrate that CT is not the same as problem solving, but a component of cognition.

Details

Title
STEM Outreach: Assessing Computational Thinking and Problem Solving
Source details
Conference: 2017 ASEE Annual Conference & Exposition; Location: Columbus, Ohio; Start Date: June 24, 2017; End Date: June 28, 2017
Publication year
2017
Publication date
Jun 24, 2017
Publisher
American Society for Engineering Education-ASEE
Place of publication
Atlanta
Country of publication
United States
Source type
Conference Paper
Language of publication
English
Document type
Conference Proceedings
Publication history
 
 
Online publication date
2017-07-20
Publication history
 
 
   First posting date
20 Jul 2017
ProQuest document ID
2317828929
Document URL
https://www.proquest.com/conference-papers-proceedings/stem-outreach-assessing-computational-thinking/docview/2317828929/se-2?accountid=208611
Copyright
© 2017. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the associated terms available at https://peer.asee.org/about .
Last updated
2025-11-14
Database
ProQuest One Academic