Content area

Abstract

We present ilastik, an easy-to-use interactive tool that brings machine-learning-based (bio)image analysis to end users without substantial computational expertise. It contains pre-defined workflows for image segmentation, object classification, counting and tracking. Users adapt the workflows to the problem at hand by interactively providing sparse training annotations for a nonlinear classifier. ilastik can process data in up to five dimensions (3D, time and number of channels). Its computational back end runs operations on-demand wherever possible, allowing for interactive prediction on data larger than RAM. Once the classifiers are trained, ilastik workflows can be applied to new data from the command line without further user interaction. We describe all ilastik workflows in detail, including three case studies and a discussion on the expected performance.

Details

Title
ilastik: interactive machine learning for (bio)image analysis
Author
Berg, Stuart 1 ; Kutra, Dominik 2 ; Kroeger, Thorben 3 ; Straehle, Christoph N 3 ; Kausler, Bernhard X 3 ; Haubold, Carsten 3 ; Schiegg, Martin 3 ; Ales, Janez 3 ; Beier, Thorsten 3 ; Rudy, Markus 3 ; Eren, Kemal 3 ; Cervantes, Jaime I 3 ; Xu, Buote 3 ; Fynn Beuttenmueller 2 ; Wolny, Adrian 3 ; Zhang, Chong 3 ; Koethe, Ullrich 3 ; Hamprecht, Fred A 3 ; Kreshuk, Anna 2 

 HHMI Janelia Research Campus, Ashburn, Virginia, USA 
 HCI/IWR, Heidelberg University, Heidelberg, Germany; European Molecular Biology Laboratory, Heidelberg, Germany 
 HCI/IWR, Heidelberg University, Heidelberg, Germany 
Pages
1226-1232
Publication year
2019
Publication date
Dec 2019
Publisher
Nature Publishing Group
ISSN
15487091
e-ISSN
15487105
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2319481576
Copyright
Copyright Nature Publishing Group Dec 2019