It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Among the 3D-printing technologies, fused deposition modeling (FDM) represents a promising route to enable direct incorporation of the battery within the final 3D object. Here, the preparation and characterization of lithium iron phosphate/polylactic acid (LFP/PLA) and SiO2/PLA 3D-printable filaments, specifically conceived respectively as positive electrode and separator in a lithium-ion battery is reported. By means of plasticizer addition, the active material loading within the positive electrode is raised as high as possible (up to 52 wt.%) while still providing enough flexibility to the filament to be printed. A thorough analysis is performed to determine the thermal, electrical and electrochemical effect of carbon black as conductive additive in the positive electrode and the electrolyte uptake impact of ceramic additives in the separator. Considering both optimized filaments composition and using our previously reported graphite/PLA filament for the negative electrode, assembled and “printed in one-shot” complete LFP/Graphite battery cells are 3D-printed and characterized. Taking advantage of the new design capabilities conferred by 3D-printing, separator patterns and infill density are discussed with a view to enhance the liquid electrolyte impregnation and avoid short-circuits.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details


1 Laboratoire de Réactivité et de Chimie des Solides, UMR CNRS 7314, Hub de l’Énergie, Université de Picardie Jules Verne, 15 rue Baudelocque, Amiens Cedex, France; Laboratoire des Technologies Innovantes, LTI-EA 3899, Université de Picardie Jules Verne, Amiens, France; RS2E, Réseau français sur le stockage électrochimique de l’énergie, FR CNRS 3459, Amiens Cedex, France
2 Laboratoire de Réactivité et de Chimie des Solides, UMR CNRS 7314, Hub de l’Énergie, Université de Picardie Jules Verne, 15 rue Baudelocque, Amiens Cedex, France; RS2E, Réseau français sur le stockage électrochimique de l’énergie, FR CNRS 3459, Amiens Cedex, France
3 IMT Lille Douai, Institut Mines-Télécom, Centre d’Enseignement, de Recherche et d’Innovation (CERI): Matériaux et Procédés Innovants, 941 rue Charles Bourseul C.S.10838, Douai Cedex, France; ACU-R&D Centre, Adichunchanagiri University, Bala Gangadharanatha Nagara, Karnataka, India
4 Laboratoire des Technologies Innovantes, LTI-EA 3899, Université de Picardie Jules Verne, Amiens, France
5 Laboratoire de Réactivité et de Chimie des Solides, UMR CNRS 7314, Hub de l’Énergie, Université de Picardie Jules Verne, 15 rue Baudelocque, Amiens Cedex, France
6 Laboratoire de Réactivité et de Chimie des Solides, UMR CNRS 7314, Hub de l’Énergie, Université de Picardie Jules Verne, 15 rue Baudelocque, Amiens Cedex, France; RS2E, Réseau français sur le stockage électrochimique de l’énergie, FR CNRS 3459, Amiens Cedex, France; Plateforme de Microscopie Électronique (PME) de l’Université de Picardie Jules Verne, Hub de l’Énergie, 15 rue Baudelocque, Amiens, France