It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
3-D gait analysis is the gold standard but many healthcare clinics and research institutes would benefit from a system that is inexpensive and simple but just as accurate. The present study examines whether a low-cost 2-D motion capture system can accurately and reliably assess adaptive gait kinematics in subjects with central vision loss, older controls, and younger controls. Subjects were requested to walk up and step over a 10 cm high obstacle that was positioned in the middle of a 4.5 m walkway. Four trials were simultaneously recorded with the Vicon motion capture system (3-D system) and a video camera that was positioned perpendicular to the obstacle (2-D system). The kinematic parameters (crossing height, crossing velocity, foot placement, single support time) were calculated offline. Strong Pearson’s correlations were found between the two systems for all parameters (average r = 0.944, all p < 0.001). Bland-Altman analysis showed that the agreement between the two systems was good in all three groups after correcting for systematic biases related to the 2-D marker positions. The test-retest reliability for both systems was high (average ICC = 0.959). These results show that a low-cost 2-D video system can reliably and accurately assess adaptive gait kinematics in healthy and low vision subjects.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details


1 Vision and Eye Research Institute, Faculty of Health, Education, Medicine, and Social Care, Anglia Ruskin University, Cambridge, United Kingdom
2 Vision and Eye Research Institute, Faculty of Health, Education, Medicine, and Social Care, Anglia Ruskin University, Cambridge, United Kingdom; Central Flying School, Royal Air Force College, College Cranwell, Sleaford, United Kingdom
3 Vision and Eye Research Institute, Faculty of Health, Education, Medicine, and Social Care, Anglia Ruskin University, Cambridge, United Kingdom; Departamento de Electromagnetismo y Electronica, Universidad de Murcia, Murcia, Spain