It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
An accurate segmentation and quantification of the superficial foveal avascular zone (sFAZ) is important to facilitate the diagnosis and treatment of many retinal diseases, such as diabetic retinopathy and retinal vein occlusion. We proposed a method based on deep learning for the automatic segmentation and quantification of the sFAZ in optical coherence tomography angiography (OCTA) images with robustness to brightness and contrast (B/C) variations. A dataset of 405 OCTA images from 45 participants was acquired with Zeiss Cirrus HD-OCT 5000 and the ground truth (GT) was manually segmented subsequently. A deep learning network with an encoder–decoder architecture was created to classify each pixel into an sFAZ or non-sFAZ class. Subsequently, we applied largest-connected-region extraction and hole-filling to fine-tune the automatic segmentation results. A maximum mean dice similarity coefficient (DSC) of 0.976 ± 0.011 was obtained when the automatic segmentation results were compared against the GT. The correlation coefficient between the area calculated from the automatic segmentation results and that calculated from the GT was 0.997. In all nine parameter groups with various brightness/contrast, all the DSCs of the proposed method were higher than 0.96. The proposed method achieved better performance in the sFAZ segmentation and quantification compared to two previously reported methods. In conclusion, we proposed and successfully verified an automatic sFAZ segmentation and quantification method based on deep learning with robustness to B/C variations. For clinical applications, this is an important progress in creating an automated segmentation and quantification applicable to clinical analysis.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China
2 Centre for Myopia Research, School of Optometry, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hong Kong, China