It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
In this paper, we address the problem of mapping outdoor rough terrain environments for mobile robots. While uncertainties arising from multiple sources are considered explicitly and assumed to be unknown-but-bounded, a set-theoretic framework is proposed to construct the terrain model as a set-valued elevation map that extends the notion of the elevation map with elevation variation in each cell stored by intervals. The localization problem of the mobile robot is also considered and solved by a set-membership filter in order to provide guaranteed bounded-pose estimation, which can be incorporated to the elevation map to improve the accuracy of the final terrain model. A more compact terrain representation can be obtained by the proposed algorithm with relatively low computational complexity, which makes it suitable for real-time applications. Furthermore, improved smoothness is achieved by the inherent conservativeness of the set-theoretic method without additional filtering or interpolation processes. Simulations as well as real-life experiments of a mobile robot operating in outdoor rough terrain environments with a 2D scanning laser rangefinder demonstrate the effectiveness and robustness of the proposed method.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Key Laboratory of Measurement and Control of CSE (School of Automation, Southeast University), Ministry of Education, China