It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Nowadays, human activity recognition is considered to be one of the fundamental topics in computer vision research areas, including human-robot interaction. In this work, a novel method is proposed utilizing the depth and optical flow motion information of human silhouettes from video for human activity recognition. The recognition method utilizes enhanced independent component analysis (EICA) on depth silhouettes, optical flow motion features, and hidden Markov models (HMMs) for recognition. The local features are extracted from the collection of the depth silhouettes exhibiting various human activities. Optical flow-based motion features are also extracted from the depth silhouette area and used in an augmented form to form the spatiotemporal features. Next, the augmented features are enhanced by generalized discriminant analysis (GDA) for better activity representation. These features are then fed into HMMs to model human activities and recognize them. The experimental results show the superiority of the proposed approach over the conventional ones.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Dept. of Computer Education, Sungkyunkwan University, Seoul, Republic of Korea
2 Dept. of Biomedical Engineering, Kyung Hee University, Gyeonggi-do, Republic of Korea
3 Dept. of Architectural Engineering, Kyung Hee University, Gyeonggi-do, Republic of Korea